Intelligent mobile systems for equitable healthcare
Access to even basic medical resources is greatly influenced by factors like an individual’s birth country and zip code. In this talk, I will present my work on designing AI-based mobile systems for equitable healthcare. I will showcase three systems that are not only interesting from an AI standpoint but are also having real-world medical impact. The first system can detect ear infections using only a smartphone and a paper cone. The second system enables low-cost newborn hearing screening using inexpensive earphones. Lastly, I will present an ambient sensing system that employs smart devices to detect emergent and life-threatening medical events such as cardiac arrest. Through these examples, I will demonstrate how new applied machine learning and sensing approaches that generalize across hardware and work in real-world environments can help to address pressing societal problems.