Contact Us

Give us a call or drop by anytime, we endeavor to answer all inquiries within 24 hours.

map

Find us

PO Box 16122 Collins Street West Victoria, Australia

Email us

info@domain.com / example@domain.com

Phone support

Phone: + (066) 0760 0260 / + (057) 0760 0560

Loading Events

« All Events

  • This event has passed.

Improving Technical Communication with End Users about Differential Privacy

November 15, 2023 @ 2:00 pm - 3:00 pm

Event Series Event Series (See All)
Title: Improving Technical Communication with End Users about Differential Privacy
 
Abstract:  Differential privacy (DP) is widely regarded as a gold standard for privacy-preserving computation over users’ data. A key challenge with DP is that its mathematical sophistication makes its privacy guarantees difficult to communicate to users, leaving them uncertain about how and whether they are protected. Despite recent widespread deployment of DP, relatively little is known about what users think of differential privacy and how to effectively communicate the practical privacy guarantees it offers.
 

This talk will cover a series of recent and ongoing user studies aimed at measuring and improving communication with non-technical end users about differential privacy. The first set explores users’ privacy expectations related to differential privacy and measures the efficacy of existing methods for communicating the privacy guarantees of DP systems. We find that users care about the kinds of information leaks against which differential privacy protects and are more willing to share their private information when the risk of these leaks is reduced. Additionally, we find that the ways in which differential privacy is described in-the-wild set users’ privacy expectations haphazardly, which can be misleading depending on the deployment. Motivated by these findings, the second set of user studies develops and evaluates prototype descriptions designed to help end users understand DP guarantees. These descriptions target two important technical details in DP deployments that are often poorly communicated to end users: the privacy parameter epsilon (which governs the level of privacy protections) and the distinctions between the local and central models of DP (which governs who can access exact user data). Based on joint works with Gabriel Kaptchuk, Priyanka Nanayakkara, Elissa Redmiles, Mary Anne Smart, including https://arxiv.org/abs/2110.06452 and https://arxiv.org/abs/2303.00738.

 
Bio:  Dr. Rachel Cummings is an Assistant Professor in the Fu Foundation School of Engineering and Applied Science at Columbia University. Her research interests lie primarily in data privacy, with connections to machine learning, algorithmic economics, optimization, statistics, and information theory. Her work has focused on problems such as strategic aspects of data generation, incentivizing truthful reporting of data, privacy-preserving algorithm design, impacts of privacy policy, and human decision-making. Dr. Cummings is the recipient of an NSF CAREER award, a Google Research Fellowship for the Simons Institute program on Data Privacy, a Mozilla Research Grant, the ACM SIGecom Doctoral Dissertation Honorable Mention, the Amori Doctoral Prize in Computing and Mathematical Sciences, a Caltech Leadership Award, a Simons Award for Graduate Students in Theoretical Computer Science, and the Best Paper Award at the 2014 International Symposium on Distributed Computing. Dr. Cummings also serves on the ACM U.S. Public

Policy Council’s Privacy Committee. She received her Ph.D. in Computing and Mathematical Sciences from the California Institute of Technology, her M.S. in Computer Science from Northwestern University, and her B.A. in Mathematics and Economics from the University of Southern California.

Details

Date:
November 15, 2023
Time:
2:00 pm - 3:00 pm
Series:
Event Category:
Event Tags:
,

Organizer

HDSI General

Other

Format
Hybrid
Speaker
Rachel Cummings

Venue

Halıcıoğlu Data Science Institute Building, Room 123
3234 Matthews Lane
La Jolla, CA 92093 United States