New Faculty 2020

Photo of Mikio Aoi
Mikio Aoi
Assistant Professor

Dr. Aoi is a computational neuroscientist interested in studying how populations of neurons coordinate their activity to perform computations. In particular, his interests are in understanding how the dynamics of neural computations impact behavior and in developing principled approaches to data analysis in close collaboration with experimentalists.

Before pursuing an interest in neuroscience he earned a bachelor’s degree in Kinesiology from California State University, Long Beach and a PhD in Mathematical Biology from North Carolina State University studying the dynamics of cerebrovascular function in stroke patients.  As postdoctoral associate in the Department of Mathematics at Boston University he developed statistical methods for characterizing rhythmic synchrony in neuronal populations. He then moved to Princeton University, where he continued his postdoctoral training with Jonathan Pillow, developing scalable methods for analyzing high dimensional datasets of neuronal activity in animals performing perceptual decision making tasks.

As a native of Southern California, Dr. Aoi is thrilled to return to California to join the outstanding students and faculty at UCSD in the Halıcıoğlu Data Science Institute and The Department of Neurobiology – Division of Biology.

Photo of Mikhail Belkin
Mikhail Belkin

Mikhail Belkin received his Ph.D. in 2003 from the Department of Mathematics at the University of Chicago. His research interests are in theory and  applications of machine learning and data analysis. Some of his well-known work includes widely used Laplacian Eigenmaps, Graph Regularization and Manifold Regularization algorithms, which brought ideas from classical differential geometry and spectral analysis to data science. His recent work has been concerned with understanding remarkable mathematical and statistical phenomena observed in deep learning. This empirical evidence necessitated revisiting some of the basic concepts in statistics and optimization.  One of his key recent findings is the “double descent” risk curve that extends the textbook U-shaped bias-variance trade-off curve beyond the point of interpolation.

Mikhail Belkin is a recipient of a NSF Career Award and a number of best paper and other awards. He has served on the editorial boards of the Journal of Machine Learning Research, IEEE Pattern Analysis and Machine Intelligence and SIAM Journal on Mathematics of Data Science.


Photo of R Stuart Geiger
R Stuart Geiger
Assistant Professor

Geiger studies the relationships between science, technology, and society — not only how science and technology have substantial impacts on society, but also how they are social institutions in themselves. He studies issues of fairness, accountability, transparency, responsibility, and contestability in machine learning, particularly in online content moderation. He has examined how values and biases are embedded in these technologies and how communities make decisions about how to use or not use them. Geiger also studies the development of data science as an academic and professional field, as well as the sustainability of free/open-source software and scientific cyberinfrastructure projects.

Geiger earned his Ph.D in 2015 at the UC Berkeley School of Information and the Berkeley Center for New Media, then was the staff ethnographer at the UC Berkeley Institute for Data Science. He joined UCSD in 2020, jointly appointed as faculty in the Department of Communication. Geiger is a methodological and disciplinary pluralist who collaborates across many different ways of knowing, but his work is often grounded in the fields of communication & media studies, science & technology studies, cultural anthropology, organizational sociology, human-computer interaction, and history and philosophy of science.

Photo of Zhiting Hu
Zhiting Hu
Assistant Professor

Zhiting Hu is an Assistant Professor in Halicioglu Data Science Institute at UC San Diego. He received his Bachelor’s degree in Computer Science from Peking University in 2014, and his Ph.D. in Machine Learning from Carnegie Mellon University in 2020. His research interests lie in the broad area of machine learning, natural language processing, ML systems, healthcare and other application domains. In particular, He is interested in principles, methodologies, and systems of training AI agents with all types of experiences (data, knowledge, rewards, adversaries, lifelong interplay, etc). His research was recognized with best demo nomination at ACL2019 and outstanding paper award at ACL2016.

Photo of Yian Ma
Yian Ma
Assistant Professor

Yian Ma works on scalable inference methods and their theoretical guarantees, with a focus on time series data and sequential decision making. He has been developing new Bayesian inference algorithms for uncertainty quantification as well as deriving computational and statistical guarantees for them.

Prior to his appointment at UCSD, he worked as a post-doctoral fellow at UC Berkeley. He obtained his Ph.D. degree at University of Washington and his bachelor’s degree at Shanghai Jiao Tong University.

Photo of Arya Mazumdar
Arya Mazumdar
Associate Professor

Arya Mazumdar obtained his Ph.D. degree from University of Maryland, College Park (2011) specializing in information theory. Subsequently Arya was a postdoctoral scholar at Massachusetts Institute of Technology (2011-2012), an assistant professor in University of Minnesota (2013-2015), and an assistant followed by associate professor in University of Massachusetts Amherst (2015-2021). Arya is a recipient of multiple awards, including a Distinguished Dissertation Award for his Ph.D. thesis (2011), the NSF CAREER award (2015), an EURASIP JSAP Best Paper Award (2020), and the IEEE ISIT Jack K. Wolf Student Paper Award (2010). He is currently serving as an Associate Editor for the IEEE Transactions on Information Theory and as an Area editor for Now Publishers Foundation and Trends in Communication and Information Theory series. Arya’s research interests include coding theory (error-correcting codes and related combinatorics), information theory, statistical learning and distributed optimization.

Photo of Babak Salimi
Babak Salimi
Assistant Professor

Babak Salimi is an assistant professor in HDSI at UC San Diego. Before joining UC San Diego, he was a postdoctoral research associate in the Department of Computer Science and Engineering, University of Washington where he worked with Prof. Dan Suciu and the database group. He received his Ph.D. from the School of Computer Science at Carleton University, advised by Prof. Leopoldo Bertossi.  His research seeks to unify techniques from theoretical data management, causal inference and machine learning to develop a new generation of decision-support systems that help people with heterogeneous background to interpret data. His ongoing work in causal relational learning aims to develop the necessary conceptual foundations to make causal inference from complex relational data. Further, his research in the area of responsible data science develops needed foundations for ensuring fairness and accountability in the era of data-driven decisions. His research contributions have been recognized with a Research Highlight Award in ACM SIGMOD, a Best Demonstration Paper Award at VLDB and a Best Paper Award in ACM SIGMOD.

Photo of Benjamin Smarr
Benjamin Smarr
Assistant Professor

Benjamin Smarr is an assistant professor at the Halicioğlu Data Science Institute and the Department of Bioengineering at the University of California, San Diego. As an NIH fellow at UC Berkeley he developed techniques for extracting health and performance predictors from repeated, longitudinal physiological measurements. Historically his work has focused on neuroendocrine control and women’s health, including demonstrations of pregnancy detection and outcome prediction, neural control of ovulation, and the importance of circadian rhythms in healthy in utero development. Pursuing these and other projects he has won many awards from NSF, NIH, and private organizations, and has founded relationships with patient communities such as Quantified Self. With the COVID-19 pandemic, he became the technical lead on TemPredict, a global collaboration combining physiological data, symptom reports, and diagnostic testing, seeking to build data models capable of early-onset detection, severity prediction, and recovery monitoring.

Photo of Berk Ustun
Berk Ustun
Assistant Professor

Berk Ustun is a postdoc at the Harvard Center for Research on Computation and Society. His research interests are in machine learning, optimization, and human-centered design. He develops methods to promote the adoption and responsible use of machine learning in domains such as medicine, consumer finance, and criminal justice.

Berk has built machine learning systems that are now used by major healthcare providers for hospital readmissions prediction, ICU seizure prediction, and adult ADHD screening. His work has been covered by various media outlets, including NPR and Wired, and has won major awards, including the INFORMS Innovative Applications in Analytics Award in 2016 and 2019, and the INFORMS Computing Society Best Student Paper.

Berk holds a PhD in Electrical Engineering and Computer Science from MIT, an MS in Computation for Design and Optimization from MIT, and BS degrees in Operations Research and Economics from UC Berkeley.

Photo of Yusu Wang
Yusu Wang

Yusu Wang obtained her PhD degree from Duke University in 2004, and from 2004 – 2005, she was a was a post-doctoral fellow at Stanford University. Prior to joining UC San Diego, Yusu Wang is Professor of Computer Science and Engineering Department at the Ohio State University, where she also co-directed the Foundations of Data Science Research CoP (Community of Practice) at Translational Data Analytics Institute (TDAI@OSU) from 2018–2020.

Yusu Wang primarily works in the field of geometric and topological data analysis. She is particularly interested in developing effective and theoretically justified algorithms for data analysis using geometric and topological ideas and methods, as well as in applying them to practical domains. Very recently she has been exploring how to combine geometric and topological ideas with machine learning frameworks for modern data science.

Yusu Wang received the Best PhD Dissertation Award from the Computer Science Department at Duke University. She also received DOE Early Career Principal Investigator Award in 2006, and NSF Career Award in 2008. Her work received several best paper awards. She is currently on the editorial boards for SIAM Journal on Computing (SICOMP), Computational Geometry: Theory and Applications (CGTA), and Journal of Computational Geometry (JoCG). She is elected to serve on the Computational Geometry Steering Committee in 2020.


Photo of Lily Weng
Lily Weng
Assistant Professor

Lily Weng is an Assistant Professor in the Halıcıoğlu Data Science Institute at UC San Diego. Her research interests focus on the intersection between machine learning, optimization and reinforcement learning, with applications in cybersecurity and healthcare. Specifically, her vision is to make the next generation AI systems and deep learning algorithms more robust, reliable, trustworthy and safer. She has worked on developing efficient algorithms as well as theoretical analysis to quantify robustness of deep neural networks. She received her PhD in Electrical Engineering and Computer Sciences (EECS) from MIT in August 2020, and her Bachelor and Master degree both in Electrical Engineering at National Taiwan University in 2011 and 2013. More details please see