Contact Us

Give us a call or drop by anytime, we endeavor to answer all inquiries within 24 hours.

map

Find us

PO Box 16122 Collins Street West Victoria, Australia

Email us

info@domain.com / example@domain.com

Phone support

Phone: + (066) 0760 0260 / + (057) 0760 0560

Filters

Changing any of the form inputs will cause the list of events to refresh with the filtered results.

Dimitris Politis presents “Model Free Prediction and Regression”

Prediction has been traditionally approached via a model-based paradigm, i.e., (a) fit a model to the data at hand, and (b) use the fitted model in order to extrapolate/predict future data. Due to both mathematical and computational constraints, 20th century statistical practice focused mostly on parametric models. Fortunately, with the advent of widely accessible powerful […]

Event Series Seminar Series

Detection and recovery of low-rank signals under heteroskedastic noise

A fundamental task in data analysis is to detect and recover a low-rank signal in a noisy data matrix. Typically, this task is addressed by inspecting and manipulating the spectrum of the observed data, e.g., thresholding the singular values of the data matrix at a certain critical level. This approach is well-established in the case of homoskedastic noise, where the noise variance is identical across the entries. However, in numerous applications, such as single-cell RNA sequencing (scRNA-seq), the noise can be heteroskedastic, where the noise characteristics vary considerably across the rows and columns of the data. In such scenarios, the noise spectrum can differ significantly from the homoskedastic case, posing various challenges for signal detection and recovery. In this talk, I will present a procedure for standardizing the noise spectrum by judiciously scaling the rows and columns of the data. Importantly, this procedure can provably enforce the standard spectral behavior of homoskedastic noise -- the Marchenko-Pastur law. I will describe methods for estimating the required scaling factors directly from the observed data with suitable theoretical justification, and demonstrate the advantages of the proposed approach for signal detection and recovery in simulations and on real scRNA-seq data.