Statistics » Directory

Home » Statistics
Photo of Mikio Aoi
Mikio Aoi
Assistant Professor

Dr. Aoi is a computational neuroscientist interested in studying how populations of neurons coordinate their activity to perform computations. In particular, his interests are in understanding how the dynamics of neural computations impact behavior and in developing principled approaches to data analysis in close collaboration with experimentalists.

Before pursuing an interest in neuroscience he earned a bachelor’s degree in Kinesiology from California State University, Long Beach and a PhD in Mathematical Biology from North Carolina State University studying the dynamics of cerebrovascular function in stroke patients.  As postdoctoral associate in the Department of Mathematics at Boston University he developed statistical methods for characterizing rhythmic synchrony in neuronal populations. He then moved to Princeton University, where he continued his postdoctoral training with Jonathan Pillow, developing scalable methods for analyzing high dimensional datasets of neuronal activity in animals performing perceptual decision making tasks.

As a native of Southern California, Dr. Aoi is thrilled to return to California to join the outstanding students and faculty at UCSD in the Halıcıoğlu Data Science Institute and The Department of Neurobiology – Division of Biology.

Photo of Ery Arias-Castro
Ery Arias-Castro

Ery Arias-Castro received his Ph.D. in Statistics from Stanford University in 2004. He then took a postdoctoral position at the Institute for Pure and Applied Mathematics (IPAM), where he participated in the program on Multiscale Geometry and Analysis in High Dimensions. After that, he took a postdoctoral position at the Mathematical Sciences Research Institute (MSRI), where he participated in the program on  Mathematical, Computational and Statistical Aspects of Image Analysis. He joined the faculty in the mathematics department at UCSD in 2005.  His research interests are in high-dimensional statistics, machine learning, spatial statistics, image processing, and applied probability.

Photo of Mikhail Belkin
Mikhail Belkin

Mikhail Belkin received his Ph.D. in 2003 from the Department of Mathematics at the University of Chicago. His research interests are in theory and  applications of machine learning and data analysis. Some of his well-known work includes widely used Laplacian Eigenmaps, Graph Regularization and Manifold Regularization algorithms, which brought ideas from classical differential geometry and spectral analysis to data science. His recent work has been concerned with understanding remarkable mathematical and statistical phenomena observed in deep learning. This empirical evidence necessitated revisiting some of the basic concepts in statistics and optimization.  One of his key recent findings is the “double descent” risk curve that extends the textbook U-shaped bias-variance trade-off curve beyond the point of interpolation.

Mikhail Belkin is a recipient of a NSF Career Award and a number of best paper and other awards. He has served on the editorial boards of the Journal of Machine Learning Research, IEEE Pattern Analysis and Machine Intelligence and SIAM Journal on Mathematics of Data Science.

Post-Doctoral Fellow: Preetum Nakkiran

Photo of Jelena Bradic
Jelena Bradic

Bradic is an Associate Professor of Statistics, and winner of multiple teaching awards. She directs the Statistical Lab for Learning Large-Scale and Complex Data. Her interests include ensemble learning, robust statistics and survival analysis. Her application areas include gene-knockout experiments, understanding cell cycles, developing new policies or detecting effects of treatments onto survival, Her research also reaches into the area of causal inference and developing new learning algorithms that can make new scientific discoveries but also quantify uncertainty with which these discoveries are being made. Her multidisciplinary expertise in handling data has expanded her research into multidisciplinary fields that include political science, marketing, engineering, public health as well as biomedical sciences.

Photo of Alex Cloninger
Alex Cloninger
Assistant Professor

Alex Cloninger is an Assistant Professor in Mathematics and the Halıcıoğlu Data Science Institute at UC San Diego. He received his PhD in Applied Mathematics and Scientific Computation from the University of Maryland in 2014, and was then an NSF Postdoc and Gibbs Assistant Professor of Mathematics at Yale University until 2017, when he joined UCSD.  Alex researches problems in the area of geometric data analysis and applied harmonic analysis.  He focuses on approaches that model the data as being locally lower dimensional, including data concentrated near manifolds or subspaces.    The techniques developed have led to research in a number of machine learning and statistical algorithms, including deep learning, network analysis, signal processing, and measuring distances between probability distributions.  This has also led to collaborations on problems in several scientific disciplines, including imaging, medicine, and artificial intelligence.

Photo of David Danks
David Danks

Professor Danks conducts research at the intersection of machine learning, philosophy, and cognitive science. He examines the ethical, psychological, and policy issues around AI and robotics across a range of sectors. He has also developed multiple novel causal discovery algorithms for complex types of observational and experimental data, and done significant research in computational cognitive science

Danks received an A.B. in Philosophy from Princeton University, and a Ph.D. in Philosophy from University of California, San Diego. He is the recipient of a James S. McDonnell Foundation Scholar Award, as well as an Andrew Carnegie Fellowship.

Photo of Yian Ma
Yian Ma
Assistant Professor

Yian Ma works on scalable inference methods and their theoretical guarantees, with a focus on time series data and sequential decision making. He has been developing new Bayesian inference algorithms for uncertainty quantification as well as deriving computational and statistical guarantees for them.

Prior to his appointment at UCSD, he worked as a post-doctoral fellow at UC Berkeley. He obtained his Ph.D. degree at University of Washington and his bachelor’s degree at Shanghai Jiao Tong University.

Photo of Arya Mazumdar
Arya Mazumdar
Associate Professor

Arya Mazumdar obtained his Ph.D. degree from University of Maryland, College Park (2011) specializing in information theory. Subsequently Arya was a postdoctoral scholar at Massachusetts Institute of Technology (2011-2012), an assistant professor in University of Minnesota (2013-2015), and an assistant followed by associate professor in University of Massachusetts Amherst (2015-2021). Arya is a recipient of multiple awards, including a Distinguished Dissertation Award for his Ph.D. thesis (2011), the NSF CAREER award (2015), an EURASIP JSAP Best Paper Award (2020), and the IEEE ISIT Jack K. Wolf Student Paper Award (2010). He is currently serving as an Associate Editor for the IEEE Transactions on Information Theory and as an Area editor for Now Publishers Foundation and Trends in Communication and Information Theory series. Arya’s research interests include coding theory (error-correcting codes and related combinatorics), information theory, statistical learning and distributed optimization.

Post-Doctoral Fellow: Avishek Ghosh


Photo of Dimitris Politis
Dimitris Politis
Distinguished Professor, HDSI Associate Director

Associate Director Politis is an internationally known scholar in mathematics and economics, working on time series, bootstrap methods, and nonparametric estimation, and a researcher with authorship of more than 100 journal papers and monographs.

Politis earned his Ph.D. in statistics from Stanford University, and dual masters’ degrees from Stanford in statistics and mathematics. He also holds a master’s degree from Rensselaer Polytechnic Institute in computer and systems engineering, and his bachelor of science degree in electrical engineering from University of Patras in Greece.

Photo of Armin Schwartzman
Armin Schwartzman

Armin Schwartzman’s research encompasses theoretical and practical aspects of statistical signal and image analysis in a variety of scientific applications. These include spatio-temporal and high-dimensional data analysis, geometric statistics and smooth Gaussian random fields, with applications in biomedicine, the environment, neuroscience, genetics and cosmology.

Armin Schwartzman received his bachelor’s and master’s degrees in electrical engineering from the Technion – Israel Institute of Technology and the California Institute of Technology; and his PhD in Statistics from Stanford University. He was an R&D engineer at Rockwell Semiconductor and Biosense Webster, and has held faculty positions in Biostatistics at Harvard University and Statistics at North Carolina State University.

Photo of Ronghui (Lily) Xu
Ronghui (Lily) Xu

Xu earned her Ph.D. in Mathematics and a Master’s in Applied Mathematics from UC San Diego, and her Bachelor’s in Math from Nankai University, China.

After a year as Postgraduate Researcher at UC San Diego, she took up Assistant Professorship in Biostatistics at Harvard School of Public Health and Dana-Farber Cancer Institute in Boston, MA. She returned to UC San Diego in 2004 with a joint appointment from the main campus (Mathematics) and health sciences (Biostatistics and Bioinformatics). Among her academic honors are as a Fellow of the American Statistical Association (ASA), and a recipient of the ASA’s David P. Byar Young Investigator Award. Her current research interests include causal inference, survival analysis, and machine learning methods as applied to biomedicine.


Photo of Wenxin Zhou
Wenxin Zhou
Associate Professor Mathematics

Wenxin Zhou is an Associate Professor in the Department of Mathematics at UCSD. My research areas include high-dimensional statistical inference, nonparametric and robust statistics. The driving force is to address some of the key issues in big data, ranging from robustness, heterogeneity, model selection uncertainty, statistical and computational trade-offs, to inference under privacy-preserving or parallel and distributed computing platforms.