Mathematics » Directory

Home » Mathematics
Photo of Jelena Bradic
Jelena Bradic

Bradic is an Associate Professor of Statistics, and winner of multiple teaching awards. She directs the Statistical Lab for Learning Large-Scale and Complex Data. Her interests include ensemble learning, robust statistics and survival analysis. Her application areas include gene-knockout experiments, understanding cell cycles, developing new policies or detecting effects of treatments onto survival, Her research also reaches into the area of causal inference and developing new learning algorithms that can make new scientific discoveries but also quantify uncertainty with which these discoveries are being made. Her multidisciplinary expertise in handling data has expanded her research into multidisciplinary fields that include political science, marketing, engineering, public health as well as biomedical sciences.

Photo of Alex Cloninger
Alex Cloninger
Assistant Professor

Alex Cloninger is an Assistant Professor in Mathematics and the Halıcıoğlu Data Science Institute at UC San Diego. He received his PhD in Applied Mathematics and Scientific Computation from the University of Maryland in 2014, and was then an NSF Postdoc and Gibbs Assistant Professor of Mathematics at Yale University until 2017, when he joined UCSD.  Alex researches problems in the area of geometric data analysis and applied harmonic analysis.  He focuses on approaches that model the data as being locally lower dimensional, including data concentrated near manifolds or subspaces.    The techniques developed have led to research in a number of machine learning and statistical algorithms, including deep learning, network analysis, signal processing, and measuring distances between probability distributions.  This has also led to collaborations on problems in several scientific disciplines, including imaging, medicine, and artificial intelligence.

Photo of Rayan Saab
Rayan Saab
Associate Professor

Rayan’s work is on the mathematics of information, data, and signals. His research is broadly motivated by problems in the acquisition, digitization, and processing of data. For example, he is interested in sampling and quantization, compressed sensing, sparse  and low-dimensional representations of data, as well as inverse problems like phase retrieval and blind source separation.

Before joining UCSD as an assistant professor in 2013, he was a visiting assistant professor and a Banting postdoctoral fellow at Duke University (2011-2013). Before that, he completed his PhD at the University of British Columbia in 2010, where he was a member of the Institute of Applied Mathematics.

Photo of Wenxin Zhou
Wenxin Zhou
Associate Professor Mathematics

Wenxin Zhou is an Associate Professor in the Department of Mathematics at UCSD. My research areas include high-dimensional statistical inference, nonparametric and robust statistics. The driving force is to address some of the key issues in big data, ranging from robustness, heterogeneity, model selection uncertainty, statistical and computational trade-offs, to inference under privacy-preserving or parallel and distributed computing platforms.